Endometriosis Concepts and Theories

Revised 2/1/20

Dan C. Martin, MD
danmartinmd@gmail.com

This document is updated periodically. An update may be available at

“Studying endometriosis is like nailing Jell-O to a tree.”

Donna Vogel, MD, PhD, NIH Endometriosis 2000

Introduction

This document focuses on symptoms since 1855 BC (Egyptian Papyrus), histology of ovarian endometriosis or endometrioid cancer in 1860 (Rokitansky), theory since 1870 (Waldeyer), difficulty in recognition since 1899 (Russell), and other concerns and theories. A theory may be useful at several levels including guiding research, acting as a framework for education, understanding possibilities in endometriosis, explaining why changes occur in endometriosis, and explaining why treatment might work. In contrast, the Tomato Effect discusses how theory has interfered with treatment in the past. Medical Reversal is a parallel concern.

No concept or theory is entirely adequate. It takes eighteen to introduce what I have seen or published and many more to discuss what I have read. This is a work in progress and will be periodically updated and posted at the addresses above.

- Endometriosis is not homogenous with more than 65 published, overlapping, visual and anatomic phenotypes and many biochemical, histochemical, immunological, and genetic phenotypes. It presents with heterogenous signs and symptoms and has a non-uniform response to hormonal, surgical, and anti-inflammatory therapy.
- There are age-dependent changes in appearances and depth of infiltration.
- Retrograde menstruation, peritoneal dispersion, attachment, infiltration, and growth; peritoneal metaplasia; and hematogenous dissemination of Müllerian or non-Müllerian stem cells can explain the diffuse locations of endometriosis.
- Coelomic metaplasia, inflammatory induction, and stem cells may play a role in both women and men.
- Pulmonary, pleural and mediastinal endometriosis may be a) retrograde menstruation with dissemination through diaphragmatic fenestrations or infiltration through the diaphragm, b) hematogenous dissemination, c) diaphragmatic lymphatic dissemination, d) coelomic metaplasia from mesoderm.
- Retroperitoneal, retrocervical, and cul-de-sac endometriosis may be a) Müllerian remnants, b) pelvic lymphatics, c) retrograde with retraction, or d) hematogenous.
- Distal (spinal) endometriosis may be hematogenous, lymphatic, or Müllerian remnant.
- Differentiation of original endometrial cells or precursors into endometriotic cells with subsequent replacement of endometrial cell populations by endometriotic cells is complex and involves biochemical, immunologic, and genetic concerns.
- Sites of reimplantation include C-section scar, surgical excision scar including peritoneal excision, drain sites, episiotomies, and vaginal tears.
- Inflammatory stimuli may include menstrual debris, surgical trauma, and infection.
- Fibrotic collagen reaction with muscular metaplasia starts as part of a local reaction.
- Immunologic maturation, immunocompetence, apoptosis, and autophagy limit growth.
Retroperitoneal, rectovaginal, and retrocervical endometriosis may be Müllerian remnants (Koninckx 1992, Donnez 2001, Signorile 2009, 2010 & 2012), lymphatic metastasis, the result of retrograde with retraction, or hematogenous metastasis. However, hidden, retroperitoneal endometriosis in women and any endometriosis in men are rare. Rei (2018) found only 17 cases in men in the world literature from 1971 to 2018. The 17 male cases and retroperitoneal cases in women are limited to the genital and lower abdomen areas and are therefore not a model for the diffuse locations of female endometriosis. Also, if organoid, a Müllerian remnant could be expected to look like an accessory and cavitated uterine mass (Acién 2012). In contrast, the location of most female cases of endometriosis, including retroperitoneal, can also be explained with retrograde, hematogenous, lymphatic, or extensional dissemination.

Furthermore, various forms of trauma such as delivery, uterine curettage, intraabdominal surgery, retroperitoneal menstruation, intraperitoneal hemorrhage, or occult pelvic inflammatory diseases may mitigate the ongoing course and chance of recurrence. That might even include intraabdominal surgery as an inflammatory or fertile site for peritoneal implantation.

Concepts and Theories covers the source of the *cell of origin*, methods of *dissemination (metastasis)*, and why, how, and when the original cell *transitions* to endometriosis. Some unified theories include *cell of origin, dissemination and metastasis* as one concept. This discussion separates considers those to be as least partially independent.

- **Cell of Origin**
 - Müllerian, Retrograde Endometrium - Degree of Differentiation
 - Whole Tissue Endometrial Fragments
 - Precursors in normal whole tissue endometrial fragments
 - Precursors in traumatized endometrium
 - Mesenchymal Cells
 - Stromal Stem Cells
 - Epithelial Stem Cells
 - Intrauterine Changes
 - Müllerian, Embryonic Remnants
 - Organized Fragments
 - Stem Cells
 - Müllerian Remnants (any congenital)
 - Müllerianosis (organoid and non-organoid)
 - Mülleriosis (non-organoid and projected to include transition)
 - Müllerian, Uterocervical Extension
 - Non-Müllerian Metaplastic (Differentiation) Theories
 - Peritoneal/Pleural Mesothelial Coelomic Metaplasia / Mesenchymal Stem Cells
 - Bone Marrow Stem Cells
 - Endometrial Stem Cells

- **Dissemination (Metastasis)**
 - Retrograde Menstruation, Implantation and Infiltration
 - Hematogenous Dissemination
 - Lymphatic Dissemination
 - Traumatic / Surgical
 - Growth (expansion or infiltration)
 - Embryonic Dissemination
 - The primary Müllerian area is in the usual location, not disseminated.
 - Dissemination of embryonic rests to non-Müllerian areas.
 - Pelvic peritoneal area and ovaries
 - Other body areas
Transition
The transition from Müllerian or non-Müllerian stem cells to endometriosis appears to hold the most potential for future research and therapeutic options. Transition involves the cellular, histological, biochemical, immunological, gene regulatory (non-hereditary epigenetic), genetic, and other changes that distinguish endometriosis from the endometrium. Those changes involve the local environment, inflammation, environmental gene regulation, immune system maturation, immune system competence, endotoxins, progenitor cell differentiation, biochemical changes immunologic changes, apoptosis, autophagy, reactive oxygen species, fibrosis, muscular metaplasia, macrophage migration inhibitory factor, clonality, microRNA, signaling, nerve activation, cancer-associated driver mutations, fibroblast to myofibroblast transdifferentiation, neurogenesis, angiogenesis, genetic dysregulation and more that are covered in this document.

The articles listed in this review are only a small part of what is published. A PubMed search for endometriosis 2/1/20 listed 27,401 articles that include many parts of the endometriosis story. That was an increase of 1,381 articles since 1/21/19 (3.7 articles daily). In addition, scholar.google.com lists 388,000 articles (increase of 23,000 since 4/13/19) and the NIH GEO database has more than 291,000 array- and sequence-based data.

Concerns include theories, results of treatment, biochemical testing, immunologic testing, inflammatory reaction, fibrosis, muscular metaplasia, spontaneous resolution of endometriosis, stages, phenotypes, aromatase production, hormonal levels, miRNA, embryology, neonatal development, genetics, environmental gene regulation (non-hereditary epigenetics), organonal development, stromal type endometriosis, endometriosis in men, bone marrow stem cells in endometriosis, differentiated stem cells, primordial germ cells, programmed death (apoptosis), oxidative stress, angiogenesis, neuroangiogenesis, and transitions into mesenchymal cells.

Concepts and Theories
1. Kahun Medical Papyrus 1825 BC vs. 1855 BC – Discussed in Redwine 2012 and Nezhat 2012 as the oldest known medical text. This hieroglyphic text discusses pelvic pain but is not sufficiently specific to determine if the pelvic symptoms were those of endometriosis. Additional historical findings include Hippocrates’ (400 BC) notation that “a part of the vagina hardens” may be the first description endometriotic nodules. Johnston’s (1977) description of an isolated rectal stricture has the characteristics of rectal endometriosis while Rutter (1808) added the scirrhous characteristic and Seymour (1830) noted a rectovaginal location. Chocolate cysts with iron noted on chemical analysis and probable endometriomas or hemorrhagic corpus lutea (see Martin 1990) were reported by Lobstein (1820). Also, see Hippocrates (466 – 377 BC), Müller 1830, and Knapp 1999.

Redwine DB. Googling Endometriosis - The Lost Centuries.
https://drive.google.com/file/d/1UIBmdgddjD5eO-1TxW0mpky_vT97f2U2/view?usp=sharing

https://www.fertstert.org/article/S0015-0282(12)01955-3/fulltext

2. Hippocrates’s (466 – 377 BC) – From Whiteley 2003 and in Redwine 2012 - Hippocrates’s theories were based purely on observation and experience. His observation “… when, in a woman who has not given birth, the menses stay away or are not able to find a way out, disease occurs, and this happens—either the mouth of the womb closes, or it doubles back
upon itself, or a part of the vagina hardens” may be the first description of nodules. Kathleen Whiteley PhD thesis (2003) http://uir.unisa.ac.za/handle/10500/1620

4. Rokitansky1860 – Rokitansky published the first description of the histology of ovarian lesions compatible with endometriosis or endometrioid cancer, adenomyosis, and endometrial polyps. He used the term “Ein Ovarial-Cystosarcom” for what we now call either an ovarian endometrioma or endometrioid cancer. The gross and microscopic characteristics were seen in a 68-year old; his description sounds as much like a cancer as endometriosis.

5. Waldeyer 1870 – Waldeyer concluded that epithelial ovarian cysts were from metaplasia (metamorphosis) developing in nests of cells in the germlinal epithelium of an ovary. This might be the first recognition of a progenitor cell for epithelial cells. The germlinal epithelium of an ovary had also been considered as the precursor to eggs. See Iwanoff 1898 for coelomic metaplasia and Lauchlan 1972 for metaplasia from a secondary Müllerian system.

7. Iwanoff 1898, Meyer 1903, Sampson 1921, Sugimami 1991, Matsuura 1999 – Coelomic metaplasia of ovarian serosa may be the same concept as Waldeyer’s metaplasia from the germlinal epithelium.

8. Von Recklinghausen 1896 (quoted in Casler 1919) – The Wolffian theory proposes that adenoma (later called endometriosis) result from intermingling when the Wolffian and Müllerian ducts cross in fetal development.

9. Russell 1899 – Clinically unrecognized, intraovarian endometriosis was discovered in an ovary with adhesions. See Sampson 1921 and 1927a for endometriosis within adhesions.

10. Clark 1908 (quoted in Kelly 1931) – Clark developed useful electrosurgery.

11. Lockyer 1913, Cullen 1914 – Rectovaginal lesion with fibrous and muscular components like adenomyoma that are compatible with what later would be called rectovaginal endometriosis.

12. Hueter 1918, Meyer 1919, Meyer 1924, Alifano 2006 – Inflammatory coelomic metaplasia of mesoderm may include both peritoneum and pleura.

13. Sampson 1918, Sampson 1927b, Hu 2019, Yovich 2020 – Discusses venous dissemination (metastasis) of intrauterine contents. See Hu 2019 for decreased miR-370-3p found in the circulation of women with endometriosis, indicating the potential for remote effects far removed from the areas affected by endometriosis See Yovich 2020 for review and illustrations.

14. Lockyer 1918 – This first classification was of the anatomic location of adenomyommas that were later called endometriosis.

15. Casler 1919 – Report of cyclic bleeding from ovarian adenoma (later called endometriosis) through a vaginal fistula after hysterectomy. Also discusses Von Recklinghausen’s Wolffian theory of intermingling when the Wolffian and Müllerian systems cross in fetal development.

16. Sampson 1921 – Discusses peritoneal implantation from internally menstruating ovaries, differences between normal endometrium and “adenomas of endometrial type” both “in
structure and function,” and adenomyosis as different than adenomyoma. “Adenomas of endometrial type” preceded his use of the term endometriosis. Adhesions between the rectum and uterus had adenoma of the endometrial type in 72% of cases.

17. Sampson 1922, Halban 1924, Jerman 2015 – Lymphatic spread (metastasis) of the endometrium

19. Sampson 1924 – Discusses multiple appearances including red raspberries, purple raspberries, blueberries raspberries, hemorrhagic blebs, and clear blebs.

20. Sampson 1925 – Discusses endometriosis phenotypes, true endometrial (Müllerian) tissue derived from the uterine or tubal mucosa, pseudo-endometrial tissue which arises from remnants of the Wolffian body, and metaplasia of the peritoneal serosa. He concludes that endometriosis is a Müllerian derivative. This may be the first mention of “endometriosis.”

22. Sampson 1927a, Nap 2004a, Nap 2004b, Nap 2012 – Sampson suggested retrograde menstrual as “a,” not “the,” source of endometriosis. He suggested additional theories, such as coelomic metaplasia and venous dissemination might cause some lesions. He added the transition from endometrium to endometriosis to his 1921 observation that endometriosis was different in “both in structure and in function”. Retrograde menstruation theory includes:

- Endometriosis differs from endometrium in structure and function. Histologically normal endometrium and endometriosis can coexist, and a transition can be seen. See Koninckx 2018 for the transition from endometrium to endometriosis.
- The cell of origin - Endometrial fragments or cells
- Dissemination - Retrograde menstruation of tissue fragments or cells
- Peritoneal dispersion
- Attachment
- Inflammation
- Infiltration
- Growth
 - Fibrosis
 - Entrapment
 - Muscular metaplasia

His 1927a article also discussed endometriosis within the adhesions of hemorrhagic cysts. Revisions of dispersion (retrograde menstruation, lymphatic, hematogenous, traumatic, surgical), congenital (Müllerianosis (organoid), Mülleriosis (non-organoid), secondary Müllerian system) and metaplasia theories have been expanded to include the role of stem cells, replacement of endometrial cells by endometriotic cells, differentiation of stem cells into endometriotic cells, and other concerns reviewed in the references that follow.

25. Ferguson 1929, Nora 1956, Steck 1965, Kaunotz 1979, Rock 1981, Donnez 1984 – Direct implantation of endometrium or endometriosis in surgical scars, drain sites, amniocentesis needle tract or traumatic vaginal tears may be from denuded surface, trauma, or inflammation.

26. Novak 1931 – Metaplasia due to hormonal stimulation
27. Sampson 1940 – Discusses the detail needed for research including attention paid to small implants, sketches, selection of sections to be submitted, supervision of technicians, and giving cutting instructions. Noted that endometriosis can remain small and superficial. See Goldstein 1980 on close-up view, Redwine 1988a on near-contact laparoscopy, and Martin 2006 on STARD.

29. Karnaky 1948, Karnaky 1969 – Karnaky proposed the use of the synthetic estrogen diethylstilbestrol (DES) to produce amenorrhea and suppress endometriosis.

30. Fallon 1946 – 13 to 19-year-old with endometriosis

32. Fallon 1950 – Endometriosis can be colorless and amenorrheic.

33. Scott & TeLinde 1950 – Early discussion of excision and fulguration (ablation)

34. Meigs 1953 – Meigs recommended early and frequent childbearing as prophylaxis.

36. Fallas 1956 – Cervical and upper vaginal agenesis associated with retrograde menstruation and severe endometriosis.

37. Kistner 1958 – Kistner proposed a state of “pseudopregnancy” to reproduce the improvement noted in endometriosis during and after pregnancy. He postulated that decidualization that results in necrosis and elimination of superficial endometriotic implants. Also, see Klemmt 2006 & Aoyagi 2017.

38. Friedman 1959 – Müllerian epithelium was noted in an exophytic bladder in a male. This AFIP slide was reported in Oliker 1971.

39. Kantor 1963 – Endometriosis due to retrograde menstruation may be a different disease than endometriosis due to embryonal rests. Two phenotypic disease theory.

40. Merrill 1966 – “Merrill factor” (quoted in Suginami 1991) is a metaplasia-inducing substance such as estrogen and a factor liberated from degenerating menstrual endometrium. Also, see Thomas 1996.

43. Karnaky 1969, Redwine 1987, Davis 1988, Koninckx 1991 – Based on age distributions, there is a 4 to 20-year progression from an initial water blister lesion (clear papule) to red to hemorrhage to scar to scar with blue dome cysts (black only appearance) to deep infiltrating endometriosis.

44. Karnaky 1969 – Endometrium and endometriosis respond differently to antiestrogen therapy. He further notes that the differences in humans were not seen in monkeys and questions if monkey research might be on normal transplanted endometrium and not endometriosis. He felt this supported the theory of coelomic metaplasia.

45. Oliker 1971 – This is the first report of endometriosis in a 46 XY male. See Friedman 1959 for Müllerian epithelium, Melicow 1967 for prostatic endometrial cancer, and Nerune 2016
for male pseudohermaphroditism. Seventeen reports of endometriosis or endometrial cancer were summarized in Rei 2018. Most were older and on estrogen therapy.

46. Lauchlan 1972 – Differentiation of precursor tissue in a secondary Müllerian system may be responsible for endometriosis outside the normal Müllerian developmental area. He felt that pelvic endometriosis was most compatible with retrograde while distal, non-abdominal sites might be hematogenous dissemination or metaplasia. He also noted that endometriosis is histologically different from endometrium with a mixture of cell types. See Cullen 1914 for fibrous and muscular components. *(Author’s Note: Many peritoneal endometriotic lesions are outside the normal Müllerian area including ileum, appendix, cecum, lateral gutters, and diaphragm.)*

47. Schifrin 1973 – Early report of endometriosis in 15 teenagers. Also, see Clark 1948.

48. Kistner 1975 – Surgery improves pregnancy rates. “Early implantations on the surface of the peritoneum should be excised. Electrocoagulation is not recommended because of the possibility of subsequent adhesions to the small intestine or the adnexal structures.”

50. Malinak 1979 – Nodules and large implants require excision. Small lesions with no nodules or infiltration can be fulgurated (coagulated). Recurrence rates were 12% to 40%.

51. Mettler 1979 – Reported on ovarian cyst resection but concluded that more than “coagulation of endometriotic foci cannot be performed via the laparoscope.” See Semm 1980. Note: Mettler and Semm were co-workers at the University of Kiel.

52. Goldstein 1980 – Endometriosis in adolescents as young as 10.5 years old with petechial lesions. Karnaky 1969 discussed young girls. Also, see Schifrin 1973

53. Goldstein 1980, Redwine 1988a – A “close-up” or “near-contact” view is better for recognizing subtle appearances of endometriosis. Redwine’s (1988a) “near-contact” is more descriptive of the technique.

54. Simpson 1980 – Genetic predisposition is generally seen as an observation, not a theory.

55. Semm 1980 – The depth of coagulation is not adequate for large nodules, and laparoscopic partial excision needs to precede coagulation for those.

57. Dmowski 1981 – Dmowski proposed that the immune system was involved in the development of endometriosis. See Giudice 2004.

58. Rock 1981, Donnez 1984 – There is an increased risk of tubal endometriosis, especially after coagulation. Tubal surgery may be the surface disruption, traumatic or inflammatory event that facilitated the growth of endometriosis.

60. Halme 1983, Canis 2017 – Halme noted an increased activation of pelvic macrophages in infertile women with mild endometriosis.

61. Halme 1984, Halme 1988– Halme noted that retrograde menstruation was more common than endometriosis. Therefore, other factors influenced the development of endometriosis.

62. Semm 1984 (German), Semm 1987 (English) – “The surgical excision of endometriosis implants is still considered the optimal treatment of pelvic endometriosis.”

63. Malinak 1984 – Recurrence rates are likely higher than published due to asymptomatic recurrence.

65. Vernon 1986 – There are differences in prostaglandin production in the four (4) surface phenotypes examined. “Petechial implants may be more pathologically influential than older implants.” “A patient who presents with severe, progressive dysmenorrhea but is shown at laparoscopy to have minimal disease may have exaggerated pain symptoms as a result of the presence of the more biochemically active, petechial implants, whereas a patient with extensive disease may have minimal pain symptoms due to the presence of primarily inactive, powder-burn implants.” See Davis 1993

66. Taylor 1986 – Clarifies that CO₂ laser thermal burn is more significant than penetration at low power densities with thermal coagulation of 2.7 mm at 30 watts/cm². Also, see Luciano 1987.

67. Thomas 1987 – Hormonal suppression with gestrinone after laparoscopy decreases the risk of progression compared with no suppression. Spontaneous regression occurred in both groups.

68. Luciano 1987 – The thermal effect of CO₂ laser and electrosurgery are similar at high power density. Depths of coagulation less than 0.2 mm at > 58,000 watts/cm². See Taylor 1986.

70. Martin 1988, Angioni 2006 – Deep excision to the vagina with laparoscopic colpotomy. Drs. Richard “Pete” Hollis, Harry Reich and Gordon Davis were instrumental in the development of these deep excisional techniques.

71. Halme 1988, Hill 1992, Giudice 2004, Northick 2016, Pavone 2016, Koninckx 2018 – Lack of immunologic competence results in an inadequate response of the peritoneal defense system to the normal retrograde flow that is present in most women. The inadequate immunologic response results in evasion of apoptosis allowing endometriosis cells to continue to live. According to the peritoneal immune surveillance hypothesis, only women with a local and/or systemic immune defect develop “endometriosis.” In Koninckx 2018 this would be called “endometriotic disease.”

73. Batt 1989 – Medial ureteral position due to an attenuated uterosacral ligament or as the medial border of a large fossa associated with endometriosis is congenital.

74. Martin 1989 – The diagnosis of endometriosis at laparoscopy increased from 42% in 1982 to 72% in 1988. The greatest change was in “subtle” lesions, which increased from 15% in 1986 to 65% in 1988. Thirteen of the 20 laparoscopic surface appearances of endometriosis were phenotypic. In 2018, we do not know if only some or all these have similar or contrasting characteristics. Vernon (1986) used four other descriptive superficial phenotypes.

75. Martin 1989, Davis 1993 – The type of procedure should consider the depth of infiltration. The definition of deep decreased from 5 mm in 1989 to less than 3 mm in 1993. Clinically,
this definition was not overly useful as it could only be determined if the lesions were excised and processed for specific depth measurements. The concept then changed over several years to peritoneal and infiltrating lesions. Infiltration and pain were generally associated with fibrosis and depth. (Ripps 1991, Ripps 1992, Khare 1996, Viganò 2017, and Liu 2017). Furthermore, even superficial appearance could be associated with infiltration to 4 mm. (Koninckx 1991)

76. Cornillie 1990 – In-phase cyclic changes are different in deep (≥5 mm), intermediate (2 to 4 mm), and superficial (<1 mm) endometriosis

77. Martin 1990 – The gross characteristics of a chocolate cyst are not always predictive of the histology. However, those with a flattened appearance and red or red and brown mottled ridges generally were endometriosis, and those with a dark uniform base, an intracavitary clot, or a yellowish rim generally were corpus lutea or albicans. See Lobstein (1820) in Redwine 2012.

78. Cornillie 1991 – Endometrial protein PP14 positivity varies in deep (≥5 mm), intermediate (2 to 4 mm), and superficial (<1 mm) endometriosis.

80. Koninckx 1991 – Infiltration found in 4% of superficial appearing vesicles at 5-6 mm and 3% of polyploid lesions at 3-4 mm. The data is in table 3.

81. Portz 1991, Vitale 2018 – Reactive oxygen species (ROS) or free radicals may increase the growth and adhesion of endometrial cells in the peritoneal cavity, promoting endometriosis and infertility.

82. Ripps 1991 – Pain and tenderness are associated with fibrosis (scarring) of implants.

83. Suginami 1991 – Suginami concluded that the multiple sites or endometriosis were most compatible with coelomic metaplasia. Pulmonary implants may be from dissemination through fenestrations (called perforations in Maniglio 2018)

84. Ripps 1992 – Persistent focal tenderness is associated with implants having a mean depth of 5.3-mm and volume of 1.2 cm³.

85. Koninckx 1992 – Endometriosis has three phenotypes. Types I and II can present as superficial (<3 cm), intermediate 3 to 5 cm) and deep (0.5 cm or deeper) lesions. Type IIIa form of adenomyosis externa with most of the volume hidden in a retroperitoneal location and is generally deeper than 1.0 cm and is compatible with Müllerian rest origin. Also see Donnez 1997 and Nisolle 1997.

86. Thomas 1993 – The only clear recommendation for treatment is in symptomatic patients. The short-term effects of medication and surgery may be placebo. But, see Thomas 1996.

87. Rier 1993 – Environmental toxins such as dioxin may increase the risk of endometriosis by modulating the immune response of altering tissue-specific responses to hormones. See Rier 1995 for estrogenic toxicants, Umezawa 2011 for diesel fuel toxicology, and Huang 2016 for comparison of dioxin-like and non-dioxin-like polychlorinated biphenyls (PCBs)

88. Hoshiai 1993 – Serial laparoscopies in symptomatic patients confirm that the development of endometriosis is non-linear, even when symptomatic. They have examples of progression, regression, and regression followed by progression. It is possible, if not likely, that asymptomatic patients could add progression followed by regression. See Evers 1994, Martin 1999, and the “Pimple Model” (Martin 2005)

89. Haney 1993 – Endometriosis is associated with a localized sterile inflammatory process, growth factors, cytokines, and activated macrophages in the peritoneal fluid.
90. Davis 1993, Vercellini 1991 – Adolescents with functional pain, cyclic pain, abdominal pain, nausea, constipation, and diarrhea during menses have the greatest proportion of red lesions. See Vernon 1986.

91. Adamyan 1993 Batt 2014 – All rectovaginal endometriosis is retrocervical. Some retrocervical endometriosis is not rectovaginal.

93. Adamson 1994 – Surgery or no treatment is better than medical therapy for fertility.

94. Oosterlynck 1994 – CA-125 levels, but not natural killer activity, decrease after excision. These data suggest that natural killer activity is a primary deficiency in women with endometriosis and the elevated CA-125 is a consequence of endometriosis. See Margatho 2018 for response to etonogestrel (ENG) implant and levonorgestrel-releasing intrauterine system (LNG-IUS)

95. Evers 1994, Koninckx 1994, Koninckx 1999, Harrison 2000, Nap 2004a, Koninckx 2018 – Endometriosis in its superficial form is generally transient, self-limiting, and cause little or no long-term damage. This has been called the “Pimple Model” (Martin 2005) as almost everyone has pimples, most are mild and resolve spontaneously, some get worse, and some come and go. (Hoshiai 1993 and Martin 1999) Some are inflammatory, can get better on medication (estrogenic BCPs, Accutane, antibiotics), can cause scarring, and are treated with surgery (dermabrasion). Koninckx endometriotic disease theory (1999) of the transition of some transient subtle to deep infiltrating and ovarian endometriomas evolved into the genetic/epigenetic theory (2018). See Halme 1988 and others for immune competence models that explain why transient is not the common pathway. See Giudice 2004 for intrauterine precursors. See Deans 2015 for clarification of definitions of “epigenetics.”

96. Wild 1994, Nisolle 2000, Witz 2002 – Endometrial stromal cells and epithelial cells can attach to the peritoneum within one hour, and the mesothelium can be replaced by 24 hours. These observations were in research animals. Research as this level in humans will likely continue to be unethical without a significant paradigm shift in technology.

97. Sutton 1994 – Pain relief at three months is not significantly different between a patient who had endometriosis removed and those who had a diagnostic laparoscopy only. At six months the placebo response had resolved, and pain recurred in the diagnostic only group.

98. Shapiro 1994, Landin-Romero 2018 – Eye desensitization and reprocessing that was initially used for trauma and substance abuse has since been exported to areas including pain management.

100. Rier 1995 – TCDD (dioxin) is an environmental toxicant that alters the action of estrogen in reproductive organs and adversely affects immunocompetence. See Rier 1993 for effect in rhesus monkeys, Umezawa 2011 for diesel fuel toxicology, Huang 2016 for comparison of dioxin-like and non-dioxin-like polychlorinated biphenyls (PCBs), and Liang 2016 & 2018 for estrogen interactions.

101. Perper 1995 – Menstrual cramps (dysmenorrhea) are related to the number of implants.

102. Fernandez 1995 – Bone marrow-derived cells are found in endometriosis. See Miyazaki 2018 for pluripotent stem cells.

103. Abu-Hijleh 1995 – Diaphragmatic lymphatics drain into retrosternal (parasternal) lymphatic trunks that carry lymph to the great veins after it filters through mediastinal lymph nodes may be the source of mediastinal cases such as Yasukawa 2018.
104. Khare 1996 – Differences in collagen types suggest that ovarian endometriosis may be metastatic while pelvic wall-infiltrating endometriosis is metaplastic.
105. Thomas 1996 – There is evidence of some improvement of endometriosis spontaneously, it was more marked with gestrinone therapy. The striking finding was that there is a tendency for endometriosis to worsen over time if untreated, but this does not occur in women on gestrinone therapy.
109. Gaetje 1997 – Invasion based on E-cad- epithelial cells
110. Leyendecker 1998 – Intrauterine tissue injury and repair at the endometrial-muscularis interface (TIAR) due to intrauterine trauma.
111. Vandivier 1998 – Vandivier quoted Dr. Frank Ling as discussing that ‘When in doubt, cut it out’ does not make sense when many patients are no better after surgery than before surgery. A team approach to pain management employing not just gynecologists, but also psychologists, nutritionists, and physical therapists is needed.
112. Balas 1998, Balas 2000, Brownson 2006, Green 2009 – The slow adoption of new research findings is related to several factors including time delays that include the times from research to submission, acceptance, location, acquisition by bibliographic databases, incorporation into reviews and textbooks, and implementation. The last two have total delays of 15.3 to 22.3 years. Nobody wants inappropriate care, but there is not much evidence that insisting on appropriateness, which is the vaguely defined consensus of experts, can lead to better patient care. A major problem with appropriateness is that it based on consensus of experts—the lowest level of evidence-based medicine.
113. Ling 1999, Jenkins 2008, and Momoeda 2014 – The decreased pain on hormonal suppression with estrogen/progesterin or GnRHα (agonists or antagonists) is more common with endometriosis but also occurs with other estrogen sensitive condition such as adenomyosis and myomata. Dr Ling’s data is:
 • 82% (27 of 33) of women with endometriosis had pain relief on leuprolide
 • 73% (8 of 11) of women with no endometriosis had pain relief on leuprolide
 • Fisher exact test 0.67. The result is not significant at p < .05.
114. Knapp 1999 – Dr. Knapp concluded that 17th and 18th-century reports of ulcerated, inflammatory lesions were compatible with endometriosis despite no histology with glands or stroma or characteristics compatible with current descriptions. On the other hand, his descriptions of symptomatology are better and consistent with endometriosis. See Redwine 2012 & Nezhat 2012 for symptomatology in 1855 BC vs. 1825 BC
115. Martin 1999 – Discusses retroperitoneal endometriosis in a Rhesus monkey that converted to surface endometriosis when she bled and opened the cystic lesion, a rectovaginal nodule was not seen at laparoscopy or laparotomy, a 14-year old who progressed from a flat peritoneal stromal endometriosis to pockets with polypoid endometriosis at age 15, the patient with the two perirectal pockets with only one having an entrance, and deep endometriosis that failed to respond to coagulation. Of note, the 14/15-year old had 3 laparoscopies between ages 14 and 18, suppression for several years, and three children. She was doing well at age 35.
116. Bulun 1999 – The enzyme, aromatase, is aberrantly expressed in endometriotic stromal cells and catalyzes the conversion of C19 steroids to estrogens, which then stimulate cyclooxygenase-2 to increase the levels of PGE2. PGE2, in turn, is a potent inducer of aromatase activity in endometriotic stromal cells. The clinical relevance of local aromatase expression in endometriosis was exemplified by the successful treatment of an unusually aggressive form of recurrent endometriosis in a postmenopausal woman using an aromatase inhibitor. See Noble 1996 & 1997 1997, Attar 2006, Maia 2008, Nortnick 2016, Mori 2019

118. Martin 2001 – The retrovaginal (RV) zone is increased due to contraction of the RV pouch and may be lengthened RV septum. See Takeuchi 2005 for a conclusion that the septum fractured rather than lengthening

120. Rier 2001 – TCDD-exposed rhesus monkeys with endometriosis exhibit long-term alterations in systemic immunity associated with elevated serum levels of specific PHAH congeners. Exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) correlated with increased peripheral blood mononuclear cells (PBMC) tumor necrosis factor-alpha (TNF-alpha) secretion in response to stimulation by T-cell mitogen and decreased cytolytic activity against NK-sensitive target cells.

121. Redwine 2002 – 38 differences between endometriosis and eutopic endometrium in humans.

123. Kats 2002 – Macrophage migration inhibitory factor is higher in early (subtle red) than in late (blue, black, or white) lesion appearances.

124. Batt 2003 – Congenital anomalies associated with possible Müllerian defects or rests include peritoneal pockets. These findings suggest Müllerian anomaly as the source for these focal lesions.

125. Giudice 2004 – A growing body of evidence indicates that a combination of genetic, hormonal, environmental, and immunologic factors plays a role in the pathogenesis of this disorder. A lack of adequate immune surveillance in the peritoneum is thought to be a cause of the disorder. According to this hypothesis, only women with a local and/or systemic immune defect develop endometriosis. The endometrium of women with endometriosis is believed to be abnormal and predisposes to successful establishment of ectopic disease. This view is compelling, especially since most women have some degree retrograde menstruation but only 6 to 10% of endometriosis. Conditions that might predispose to establishment include genetics, environmental factors, and immune surveillance (activation of peritoneal macrophages with increased cytokine production).

127. Petta 2005 – Levonorgestrel-releasing intrauterine system is useful for the treatment of pain

128. Takeuchi 2005 – Takeuchi saw no continuity between the rectovaginal septum and the lesion. Endometriosis in the contracting rectovaginal pouch may tear away from the septum, and the tissue behind the upper vagina may be loose connective tissue or scar rather than elongated septum.
129. Martin 2005 – The “pimple model” was presented as part of “Clinical and Research Aspects of Endometriosis” at the University of Tennessee Health Sciences Center, Department of Obstetrics and Gynecology rounds November 15, 2005. Almost everyone has pimples, most are mild and resolve spontaneously, some get worse, and some come and go. (Hoshiai 1993, Martin 1999) Some are inflammatory, can get better on medication (estroge...http://www.danmartinmd.com/files/endouthsc2005.pdf

130. Chan 2004 – Endometriosis is clonal

131. Marsh & Laufer 2005 and Cabana et al. 2010 – Inflammation may be a precursor, facilitator or early presentation. Inflammatory induction of coelomic metaplasia or a damaged peritoneum as a fertile ground for implantation may be the source of endometriosis.

132. Agrawal 2005 – Before clinicians recommend antioxidants, randomized controlled trials with sufficient power are necessary to prove the efficacy of antioxidant supplementation in disorders of female reproduction.

134. Martin 2006 – Discusses the use of standards for reporting of diagnostic accuracy (STARD) criteria such as specific and recorded features for a normal or abnormal laparoscopy, histologic criteria, distance of observation, clinical palpation, exam under anesthesia, intra-operative palpation, and palpation with instrumentation.

135. Attar 2006 – Steroidogenic acute regulatory protein (StAR) and aromatase are essential for E(2) production and are expressed in endometriosis. There is a positive feedback loop that favors continuous formation of E2 and PGE2 in endometriosis. Also, the eutopic endometrium of patients with endometriosis is capable of aberrantly expressing the enzyme aromatase. See Noble 1996 & 1997, Bulun 1999, Maia 2008, Northnick 2016, Mori 2019.

136. Batt 2007 – There was “no evidence of pelvic endometriosis found at the time of a bilateral oophorectomy” and therefore, Agrawal’s (2006) case of intramedullary endometriosis of the conus medullaris argues 1) for Müllerianosis and against a pelvic source for hematogenous or lymphatic dissemination or 2) for undiagnosed pelvis endometriosis as a source of venous or lymphatic dissemination.

137. Meng 2007 – Menstrual blood-derived stem cells (MenSCs) may contribute to endometriosis. See Chen 2019 for discussion of their use as an alternative source for research and application in regenerative medicine.

138. Kodati 2008 – Theory that menstrual, endometrial cells can adhere to peritoneum traumatized by Shigella or Shigella-like microorganisms.

140. Guo 2009 – There is a need for identification of prognostic biomarkers for recurrence.

141. Mier-Cabrera 2009 – A high antioxidant diet at 150% of the suggested daily intake of vitamin A (1050 microg retinol equivalents), 660% of the recommended daily intake (RDI) of vitamin C (500 mg) and 133% of the RDI of vitamin E (20 mg) was associated with diminished peripheral oxidative stress markers and enhanced antioxidant markers in women with endometriosis. See Mier-Cabrera 2009 Nishihara 2018 & Samimi 2019
142. Burney 2009 – MicroRNAs (miRNAs) have significant regulatory influence on the expression of target genes involved in both physiologic and pathologic conditions. There is incomplete transitioning from proliferative to secretory phase endometrium in women with endometriosis. Early secretory endometrium (ESE) from women with endometriosis is characterized by a miRNA expression profile that differs from that of healthy ESE. Among the miRNAs underexpressed in ESE in the setting of endometriosis are members of the miR-9 and miR-34 families. See Ohlsson Teague 2009, Saare 2017, Agrawal 2018

143. Ohlsson Teague 2009 – MicroRNAs (miRNAs) are naturally occurring posttranscriptional regulatory molecules that potentially play a role in endometriotic lesion development. miRNAs and their cognate mRNA target sequences appear to constitute pathways that promote endometriosis. See Burney 2009, Saare 2017, Agrawal 2018

144. Khan 2010 – Bacterial endotoxins such as lipopolysaccharide in the pelvis across the phases of the menstrual cycle. This lipopolysaccharide derived from higher colony formation of Escherichia coli in menstrual blood may promote the growth of endometriosis after its binding with toll-like receptor 4 (TLR4). Also see Khan 2016 for bacterial contamination hypothesis.

145. Chapron 2010 – Among 15 patients with non-operated associated asymptomatic posterior DIE lesions, a second surgical procedure indicated for pain symptoms was necessary for only one patient (6.7%).

146. Signorile 2010 & 2012 – Fetal tissue compatible with endometriosis on H&E, H&VG and immunohistochemistry stains (CD10, Era, CA125, cytokeratin 7, vimentin, and desmin) was found in the rectovaginal septum, proximity of the Douglas pouch, and the mesenchymal tissue close to the posterior wall of the uterus. This is the same anatomic area studied by Konincxk (1992) with Type III being the most suggestive of a congenital rest and Donnez (2001) on metaplasia from Müllerian remnants.

147. Adamson 2010 – The Endometriosis Fertility Index is the only validated tool to determine fertility after surgery. Fertility rates after endometriosis surgery are based 50% of the surgical findings and 50% on history. https://www.fertstert.org/article/S0015-0282(09)03714-5/fulltext

149. Ferrero 2010 – The symptoms of endometriosis can be subtle with only 38% suspected on unfocused histories. Ferrero reported that 62% were suspected on focused history.

150. Batt 2011 – Dr. Batt’s book “A History of Endometriosis” presents the great leap forward that occurred from 1860 to 1946 from a statistical grouping of signs and symptoms through treating symptoms to treating diseases. The pathophysiology of endometriosis was initially defined in an era when surgery was the only treatment. https://www.springer.com/us/book/9780857295842

151. Umezawa 2010 – Prenatal and postnatal diesel exhaust exposure is toxic and enhances the activation of mast cells and prolongs the persistence of collagen fibers in the induced rat model of endometriosis.

152. Acién 2012 – Accessory and cavitated uterine masses (ACUM) are non-inflammatory, organoid examples of how Müllerian remnants can appear. These are also know as juvenile cystic adenomas (JCA) (Branquinho 2012, Dadhwal 2017)

153. Redwine 2012, Nezhat 2012 – Clinical descriptions suggesting the presence of endometriosis were found in the oldest known medical text the Medical Papyrus (1825 BC) or Egyptian concepts (1855 BC). These are introduced in Redwine 2012 and Nezhat 2012.
154. Batt 2013, Laganè 2017 – Müllerianosis as an organoid remnant of Müllerian tissue in the native area of embryologic Müllerian development. Organoid remnants are not what is more commonly called endometriosis.

155. Batt 2013 – Hamartoma is a neoplastic Müllerian growth in the normal Müllerian area.

156. Brosens 2013 – Endometriosis is a progressive disease. A delay of several years before diagnosis is associated with advanced endometriosis in adolescents. Brosens suggests early ultrasound and endoscopy for diagnosis and therapy. This tertiary care study of patients seen after years of delay for pelvic pain and pelvic masses can be contrasted with Knox 2019 that followed adolescents with dysmenorrhea for an average of 10.2 years during which time 18.6% were diagnosed with endometriosis. All of Knox’s cases of endometriosis were mild. See Knox 2019.

157. Raposo 2013 – Extracellular vesicles involved in intercellular communication (signaling)

159. Becker 2014 – Harmonization to six surgical phenotypes (clear, red, white, blue/black, brown, and vascular) are discussed. Becker is an open access at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4230690/

162. Forte 2014 – Chromosomal anomalies and instability can alter gene expression

163. Khan 2014 – Occult non-recognized endometriosis found in 15.2% of women with visible endometriosis (15.2%) and 6.4% of controls (6.4%). There are thee patterns of occult microscopic endometriosis based on patterns of Ber-EP4 (epithelial cell marker), CD10 (stromal cell marker), Calretinin (mesothelial cell marker), estrogen/progesterone receptors (ER/PR) and Ki-67 (cell proliferation marker). Also see Martin 1989 for increase with awareness of subtle appearances, Khan 2010 for endotoxins, Hopton 2014 for “near-contact” laparoscopy, and Khan 2016 for cross-talk between inflammation and ovarian steroids or the stress reaction.

164. Hopton & Redwine 2014 – Khan (2014) confirms that most (84.8%) women with endometriosis do not have occult endometriosis.

165. Signorile 2014 – Anti-müllerian hormone (AMH) in the normal endometrium, acts in a paracrine fashion, negatively regulates cellular viability. Treatment of endometriosis with AMH decreased growth.

166. Parra-Herran 2014 – There is a high sensitivity and specificity of interferon-inducible transmembrane protein 1 (IFITM1) comparing normal and sarcomatous endometrial samples with leiomyoma, usual type, and cellular leiomyoma. See Sun 2019. CD10 expression is not specific to endometrial stromal cells and is found in other cells such as vascular endothelial cells, uterine fibroids, leiomyosarcoma. hematopoietic, renal tubular and smooth muscle cells. IFITM1 is more specific for endometrial stromal cells than CD10.

168. Sugamata 2015 – Leukotriene receptor antagonist (LTR-A), an anti-allergic drug, is associated with apoptotic fibroblasts and degeneration of collagen fibers and may this
decrease the transition to deep infiltrating endometriotic disease.
http://dx.doi.org/10.4236/ojog.2015.56045

169. Abrão 2015 – In women with deep endometriosis, surgery is the therapy of choice for symptomatic patients when deep lesions do not improve with medical treatment.

170. Guo 2015 – Repeated tissue injury and repair (ReTIAR) due to cyclic bleeding in endometriosis.

171. Laux-Biehlmann 2015 – Pain due to activation of peripheral nerve endings in response to retrograde and extra-uterine menstruation

172. Deans 2015 – Deans and Maggert discuss epigenetics definitions that require heritability as contrasted those definitions that are more concerned with environmentally mediated phenotypes and plasticity. They concluded that the latter definition is of gene regulation rather than epigenetics and note that definition is more commonly used in such fields as ecology, physiology, and psychology. Those in the field of genetics are more commonly concerned about inter-generational heritability. Understanding the differences between the definitions is important in interpreting the mechanisms. Most studies of endometriosis fit the gene regulation definition rather than a heritable definition.

173. Liang 2016, Liang 2018 – Estrogen plays a role in maintaining balance of nerve interaction and can also be part of dysfunction of nerve interaction.

174. Huang 2016 – Dioxin-like CB126, but not non-dioxin-like CB153, significantly enhanced 17β-estradiol (E2) biosynthesis in a dose-dependent manner. CB126 triggered the inflammatory response by directly stimulating the secretion of inflammatory factors and indirectly reducing the level of lipoxin. A PCB-treated endometriosis mouse model confirmed that CB126 rather than CB153 increased the levels of both E2 and inflammatory factors in peritoneal fluid and promoted the development of endometriotic lesions. These effects were mediated by the AhR receptor

175. Canis 2016, Canis 2017 – The extent or the surgical phenotype of the disease may be related to the initial anatomic localization, type, and severity of the trauma. The local natural history of endometriotic lesions may depend on the tissue on which they have developed. If the trauma is stopped and the injured tissue is repaired, the severity will not increase significantly. True recurrences of the disease may be rare unless a new trauma induces further endometriotic lesions.

176. Koninckx 2016 – There are four phenotypic types of endometriosis: subtle, typical, cystic ovarian, and deep infiltrating.

177. Nerune 2016 – Persistent Müllerian Duct Syndrome (PMDS), a rare form of internal male pseudohermaphroditism in men. This includes references from 2009. Also, see Melicow 1967 and Oliker 1971 for 46 XY males.

178. Khan 2016 – The bacterial contamination hypothesis reviews the lipopolysaccharide regulation of the pro-inflammatory response in the pelvis and growth of endometriosis via the LPS/TLR4 cascade. Menstrual blood was highly contaminated with Escherichia coli and the endometrial samples were colonized with other microbes. Cross-talk between inflammation and ovarian steroids or the stress reaction was also observed in the pelvis. GnRHa treatment may worsen intrauterine microbial colonization, with the consequent occurrence of endometritis in women with endometriosis.

180. Tiboni 2016 – Animal defects on therapeutic or lower levels doses of aromatase inhibitors include skeletal anomalies, abnormal head morphology, increased anogenital distance in female fetuses, urinary tract system anomalies, and placental enlargement.

181. Bruner-Tran 2016 – Bruner-Tran K, et al., investigated heritable, germline, epigenetic changes such as reduced progesterone sensitivity, in mice after exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and demonstrated a transgenerational occurrence. They could not determine if these changes lead to the development of endometriosis or were a consequence of the inflammatory nature of the disease. See Deans 2015 for clarification of definitions of “epigenetics.”

182. Laganà 2017 – “Unus pro omnibus, omnes pro uno” is a combination of many concepts into a process that begins during embryogenesis. Components include Hox (homeobox) genes, Wnt (wingless) genes, Müllerian derivatives and remnants, genital ridge leakage during organogenesis, human embryonic stem cells (hEmSC), endometrial stem progenitor cells (hESP), stem/progenitor cells residing in adult uterus, mesenchymal stem cells from bone marrow, and embryonic ectopic implantation.

183. Gordts 2017 – Whether the original cell comes from the endometrium, endometrial pale cells, other stem cells, bone marrow cells, embryonic cells, neonatal cells, adult cells or another source of endometrial or potentially endometrial cells is not as important as the genetic and epigenetic changes are associated with the specific phenotypes of endometriosis. See Deans 2015 for clarification of definitions of “epigenetics.”

184. Liu 2017 – Epithelial-mesenchymal transition, fibroblast-to-myofibroblast transdifferentiation, smooth muscle metaplasia, fibrosis, vascularity, hormonal receptors, and proteins involved in epigenetic modifications. Differences may result from the different lesional microenvironments.

185. Makiyan 2017 – Congenital primordial germ cells remnants can be the source.

187. Aoyagi 2017 – Kistner proposed a state of “pseudopregnancy” to reproduce the improvement noted in endometriosis during and after pregnancy. He postulated that decidualization that results in necrosis and elimination of superficial endometriotic implants. Also, see Kistner 1958 & Klemmt 2006

188. Kohl Schwartz 2017 – Mild endometriosis, as in superficial lesions, is related to a great extent to an inflammatory disorder, possibly leading to defective folliculogenesis, fertilization, or implantation, presenting an increased risk of miscarriage.

189. Parasar 2017 – Mouse embryonic stem cells (mESCs) express both glandular (CD9) and stromal (CD13) markers of human endometrium, suggestive of a novel endometrial precursor cell population. This model represents a potential key step in elucidating the mechanisms of ectopic endometrial tissue growth.

190. Gruber-Dujardin 2017 – Immunohistochemical coexpression of epithelial and mesenchymal markers (CK, vimentin, sometimes together with SMA and desmin), most obvious in poorly differentiated endometriosis and resembling distinct mesothelial cell properties, are associated with induced differentiation of peritoneal cells into endometrial tissue and support the theory of coelomic metaplasia.

191. Burlev & Ilyasova 2017, Burlev, et al. 2018 – Burlev, et al. concluded that serum and eutopic endometrial vasoactive intestinal peptide (VIP) can be used to assess pain and neuroangiogenesis in endometriosis. They found elevated vasoactive intestinal peptide (VIP) transcript and protein levels in serum, eutopic endometrium, and endometriosis were
associated with chronic pain indicated an elevated inflammation in the pelvic microenvironment.

192. Munró 2017, Munró 2019 – A generalized inflammatory state is suggested by the elevated total circulating microparticle levels in patients with deep infiltrating endometriosis. Those levels increase after excisional surgery compared with CO2 laser vaporization. Also see Hu & Taylor 2019 for increased circulating mRNA in endometriosis patients.

193. Saare 2017 – The limited overlap between the proposed disease-related miRNAs could be due to the heterogeneity in tissue composition, as some studies have compared highly heterogeneous whole-lesion biopsies with endometrial tissue, some have compared the endometrium from patients and controls, and some have used pure cell fractions isolated from lesions and endometrium. This review concludes that the experimental design should be changed and should move from highly heterogeneous tissues to studies using specific cell populations. See Ohlsson Teague 2009, Burney 2009, Agrawal 2018

194. Agrawal 2018 – Despite numerous studies on circulating miRNAs in endometriosis, no single miRNA or any panel of them seems to meet the criteria of a diagnostic biomarker. The disagreement between the various studies upholds the demand of larger, well-controlled systematic validation studies with uniformity in the research approaches and involving diverse populations. See Ohlsson Teague 2009, Burney 2009, Saare 2017.

195. Guo 2018 – The six driver genes reported to be mutated in endometriosis (the RP set) may play important roles in fibrogenesis but not necessarily malignant transformation.

196. Klemmt 2018 – Other stem cell concerns include lack of apoptosis, evasion of immuno-surveillance, angiogenesis, neurogenesis, exosomes, plasticity, stem cell signaling, aberrantly activated signaling pathways, stem cell migration, immunogenicity, peritoneal cavity homeostasis, dysregulation of Wnt and Hox genes, phenotype and microRNA analysis. Free download at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925869/

198. Brosens 2018 – Progression requires active neo-angiogenesis.

199. Panir 2018 – Non-coding RNA is associated with endometriosis.

201. Matsuzaki 2018 – Using autophagy inhibition may decrease the chance of recurrence.

202. Baranov 2018 – A genetic program governs the origin of stem cells, transition into mesenchymal stem cells, invasion of the peritoneum and progression to endometriotic lesions. Baranov discusses the possibility that the stem cells could be disseminated during organogenesis or from the endometrium during retrograde menstruation.

203. Rei 2018 – Male endometriosis is rare. Rei found only 17 cases in men in the world literature from 1971 to 2018. Rei discusses Müllerian embryonal rests, induction, immune dysfunction, and coelomic metaplasia theories. Seven of the most recent eight had markers compatible with Müllerian source. One (see Zamecnik 2013) of the seven had markers compatible with coelomic metaplasia. Even in men, more than one theory may be necessary. Open access at https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5833878/

204. Zhang 2018 – Metastasis-associated gene 1 (MTA1) may serve as a prognosis marker. The conclusion that a prognosis marker may be more important than a diagnostic marker was discussed at the 2017 World Congress of Endometriosis in Vancouver.
205. Christofolini 2018 – Differences in allelic genetic distribution between fertile women and women with endometriosis and infertility are seen in the KAZN gene for grades 1 and 2 and LAMA5 gene for grades 3 and 4. Infertility may be genetic.

206. Margatho 2018 – CA-125 decreases more on etonogestrel (ENG) implant than on levonorgestrel-releasing intrauterine system (LNG-IUS). However, the decrease in soluble CD23 and endometrial nerve fiber density were similar. CD23 and nerve fiber density may be a surrogate marker for response to hormonal suppression with implantable prostegational devices. See Oosterlynck 1994 for CA-125 and natural killer activity response to excision.

207. Chen 2018 – Women affected by endometriosis have an independently elevated risk of placenta previa in pregnancy.

208. Sui 2018 – Autophagy-related proteins, microtubule-associated protein light chain 3 (LC3) and Beclin1 were lower while matrix metalloproteinase-2 (MMP-2) was higher in women with endometriosis.

209. Nishihara 2018 – Oxidative stress in women with infertility is associated with endometriosis. See Mier-Cabrera 2009 & Samimi 2019

210. Jiang 2018 – IL-37 regulated the biological behavior of ectopic endometrial stromal cells through multiple signaling pathways such as β-catenin, p-p38, p-ERK1/2, and p-JNK, and this signaling was abolished by a Wnt/β-catenin inhibitor.

211. Rekker 2018 – Cell-type-specific analysis revealed differences in miRNA expression patterns between stromal cells isolated from the endometrium and endometriomas. Two molecular mechanisms are involved in endometriosis pathogenesis. First, HOXA9 and HOXA10 genes are regulated by miR-139-5p among other factors and are potentially involved in endometriosis-associated infertility. Second, the aberrant expression of miR-375 in ectopic stromal cells may contribute to higher levels of EDN1 in lesions, which can be associated with pain mechanisms or be involved in the regulation of invasive growth and cell proliferation in endometriosis development.

212. Gibson 2018 – ‘Intracrine’ is a 1980s concept based on the ability of cells within non-gonadal tissues to both produce and respond to the same hormone. Intracrinology is the way that tissue such as endometriosis can utilize inactive steroids present in the blood to respond to local physiological demands and ‘fine-tune’ the activation or inhibition of steroid hormone receptor-dependent processes.

213. Flores 2018 – Symptomatic response to progestin has been unpredictable. However, a progesterone receptor status can predict clinical response and, therefore, be useful in clinical management.

214. Arosh 2018 – Dual inhibition of ERK1/2 and AKT pathways, that regulate signaling proteins in human endometriotic cells in an epithelial cells and stromal cell specific pattern, can decrease the growth and survival of endometriotic lesions by decreasing proliferation and inducing apoptosis of epithelial cells and stromal cells of the endometriotic lesions.

215. García-Solares 2018 – Endometriotic gland invasion is dominated by collective cell migration. If the lead edge loses contact with the dominant central portion, expansion ceases.

216. Jaeger-Lansky 2018 – There were higher local levels of inflammatory IL-6, IL-8, IL-10 and TNF-α levels in peritoneal lavage fluid of endometriosis patients but not in plasma levels. There was no elevation of tissue damage markers (“Danger signals” HMGB1, IL-32α, and IL-33) associated with cell death in response to strong inflammation.

217. Suda 2018 – Suda et al. identified numerous cancer-associated mutations in epithelial cells from ovarian endometriosis and normal endometrium. They describe a heterogeneous and
mosaic-like uterine endometrial epithelium, shaped by endometrial glands with distinct somatic mutations. They suggest clonal expansion of epithelial cells with cancer-associated mutations leads to the development of endometriosis. See Hapangama 2018 for basalis-like cells in the endometrium of endometriosis patients.

218. Hapangama 2018 – Women with endometriosis demonstrated higher number of basalis-like cells (SSEA1+, nSOX9+) in the functionalis layer of the eutopic endometrium compared with the healthy women without endometriosis in the secretory phase of the cycle (P < 0.05). Induction of endometriosis resulted in a similar increase in basalis-like epithelial cells in the eutopic baboon endometrium. See Suda 2018 for cancer-associated mutations.

219. Manavella 2018 – A two-step ovarian tissue transplantation procedure using adipose tissue-derived stem cells in xenografted frozen–thawed human ovarian tissue enhances vascularization in the early post-grafting period. A parallel implication is that the combination of local or hematogenous stem cells combined with retrograde menstruation may be necessary for or may increase the rate of implantation of endometriosis.

220. Marcellin 2018 – Marcellin, Méhats, and Gogsev found histopathological alterations (fibrinoid necrosis and connective tissue accumulation in the amnion, chorion, and decidual layers) in the fetal membranes of women with endometriosis, but none in controls at Cesarean-section. Fifteen (89%) of 19 were previously diagnosed at surgery while 4 (21%) of 19 women were diagnosed using clinical and imaging evaluation.

221. Nikgianakis 2018 – Nikgianakis et al. is a retrospective analysis of the complications of pregnancy after laparoscopic excision of deep infiltrating endometriosis (DIE). They conclude that excision of DIE does not decrease the increased risk of placenta previa, gestational hypertension and intra uterine growth retardation (IUGR) associated with endometriosis.

222. Miyazaki & Bulun – Defective endometrial stromal fibroblasts (EMSFs) contribute to uterine factor infertility, endometriosis, and endometrial cancer. Induced pluripotent stem cells (iPSCs) derived from skin or bone marrow biopsies can provide a patient-specific source that can be differentiated to various cells types.

223. Hu & Taylor 2019 – Decreased miR-370-3p, is associated with an increased risk of endometriosis and was found in the circulation of women with endometriosis, indicating the potential for remote effects far removed from the areas affected by endometriosis. Steroidogenic factor 1 (SF-1), an essential transcriptional regulator of multiple genes involved in estrogen biosynthesis, is aberrantly increased and plays an important role in the pathogenesis of endometriosis. The expression of SF-1 in endometriosis is regulated by miR-370-3p. miR-370-3p levels are decreased in the serum of patients with endometriosis while SF-1 mRNA levels are inversely upregulated in endometriotic lesions compared to respective controls. Overexpression of miR-370-3p inhibits cell proliferation and induces apoptosis in endometriotic cells. miR-370-3p functions as a negative regulator of SF-1 and cell proliferation in endometriotic cells. MiR-370-3p may affect steroidogenesis in multiple organs, altering steroid production in several tissues and effecting the local estrogen effect throughout the body. See Sampson 1918 & 1927b for venous dissemination and Munró 2017 and Munró 2019 for circulating microparticle levels.

224. Koninckx 2019 – The genetic/epigenetic theory is a theory of the transition from endometrial or other stem cells to endometriosis. It is not dependent on the cell of origin or method of dissemination. A set of genetic and epigenetic incidents transmitted at birth, some of which occurred during inter-uterine development, include hereditary aspects that predispose to the endometriosis-associated changes in the endometrium, immunology, and placentation. However, to develop typical, cystic ovarian or deep endometriosis lesions, a
variable series of additional transmissible genetic and epigenetic incidents are required to occur in a precursor cell. Subtle lesions are viewed as endometrium with a histologic diagnosis of “endometriosis.” After additional genetic and epigenetic incidents, those can transition into “endometriotic disease.” Typical cystic ovarian or deep endometriosis lesions are heterogeneous and represent three different diseases. See Deans 2015 for clarification of definitions of “epigenetics.”

225. Sokalska 2019 – Lipid-soluble statins (simvastatin, lovastatin, atorvastatin) were effective in inhibition of growth and invasiveness of human endometrial stromal cells

227. Ryu 2019 – Chrysin derived from honey, propolis (bee glue), or passion flowers has anti-inflammatory and anti-angiogenesis effects. Chrysin suppresses the proliferation of endometriosis and induces programmed cell death by activating the endoplasmic reticulum stress response, inactivating the PI3K signaling pathways, increasing the cytosolic calcium level and generating of reactive oxygen species.

228. Donnez 2019 – Adenomyosis externa (a form of deep pelvic endometriosis) may be an extension of uterocervical adenomyosis. Uterocervical adenomyosis could therefore be the cause of deep endometriotic nodules, as is also the case for deep anterior endometriosis, called bladder adenomyotic nodules.

229. Samani 2019 – Samani et al. demonstrated that endometriosis-derived cells are capable of migration to extrapelvic organs including the lung, spleen, liver and brain in a mouse model. They speculate that some of the non-pelvic pain, fatigue, malaise, eating disorders, anthropometric variation, endocrine and metabolic dysfunction, immunologic defects, and sociopsychological issues may be due to undiagnosed, distal cellular infiltration with endometriosis.

230. Chen 2019 – Menstrual blood-derived stem cells (MenSCs) may contribute to endometriosis and be an alternative source for research and application in regenerative medicine. See Meng 2007 for initial recognition of MenSCs.

231. Sun 2019 – Interferon-inducible transmembrane protein 1 (IFITM1) is a highly sensitive marker for endometriotic stromal cells in ovarian and extragenital endometriosis. See Parra-Herran 2014 for high sensitivity and specificity of IFITM1 comparing normal and sarcomatous endometrial samples with leiomyoma, usual type, and cellular leiomyoma.

232. Taylor 2019 – Reviews endometriosis as a complex systemic disease with manifestations including pain, fatigue, powerlessness, social support, emotional well-being and self-image impairment on the Endometriosis Health Profile 30; psychological manifestations; depression and anxiety; multiple organ system involvement; central sensitization; lower average body weight; and cardiovascular abnormalities. These may involve circulating inflammatory cytokines and microRNAs.

233. Bouquet de Joliniere 2019 – Expands the use of multiple inflammatory markers to classify endometriosis and discusses the possibility that these may have individualize care.

234. Forster 2019 – Macrophages are central to the pathophysiology of endometriosis: they dictate the growth and vascularization of endometriosis lesions and promote lesion innervation. Disease-modified macrophages exhibit increased expression of IGF-1 in an in vitro model of endometriosis-associated macrophages. Macrophage-derived IGF-1 promotes sprouting neurogenesis and nerve sensitization in vitro. IGF-1 elevations in peritoneal fluid from women with endometriosis positively correlate with their pain scores. Macrophage depletion in a mouse model of endometriosis can reverse abnormal changes in pain behavior. The Igf-1 receptor inhibitor linsitinib reverses the pain behavior observed in mice.
with endometriosis. Therapies that modify macrophage phenotype may be attractive therapeutic options for the treatment of women with endometriosis-associated pain.

235. Knox 2019 – Adolescents with dysmenorrhea were followed for an average of 10.2 years during which time 18.6% were diagnosed with endometriosis. All cases of endometriosis were mild. This is contrasted with Brosens’ 2013 conclusion from a tertiary center that endometriosis in adolescents is a hidden, progressive and severe disease. See Brosens 2013

236. Yan 2019 – There is evidence that sensory nerves play an important role in promoting the development and fibrogenesis of endometriosis. This role explains as why deep endometriosis (DE) frequently have higher fibromuscular content than that of ovarian endometriomas (OE), highlights the importance of lesional microenvironment in shaping the lesional fate, gives more credence to the idea that ectopic endometrium is fundamentally wounds that go through repeated tissue injury and repair, and should shed much needed light into the pathophysiology of endometriosis.

237. Zhou 2019 – Women with high pre-operative anti-Müllerian hormone (AMH) had a significantly higher cumulative pregnancy rate than those with low AMH. Preoperative AMH level might be a useful marker to predict the occurrence of natural pregnancy and as part of the consideration of women considering endometriosis surgery for fertility.

238. Akter 2019 – Machine learning using transcriptomics and methylomics data can be used to distinguish endometriosis from non-endometriotic samples.

239. Mori 2019 – PGC-1a, a transcriptional coactivator-modulating steroid hormone, regulates aromatase expression and activity. Estrogen activities mediated by different types of estrogen receptors abnormally elevated in local tissues could also be involved in the development of endometriosis. The authors demonstrated that the isoflavone aglycone, a partial agonist of the estrogen receptor, suppressed the formation of endometriotic lesions. See Noble 1996 & 1997 1997, Bulun 1999, Attar 2006, Maia 2008, Northnck 2016

240. Samimi 2019 – Molecular signaling pathways can be used to study the roles of inflammation, oxidative stress, angiogenesis, and apoptosis dysregulation. See Mier-Cabrera 2009 and Nishihara 2018.

241. Alio 2019 – The 41 members of the Endometriosis Treatment Italian Club published ten low-value medical interventions, characterized by an unfavorable balance between potential benefits, potential harms, and costs, which should be discouraged in women with endometriosis. Open access at

Subtle Inflammatory Lesions (Subtle Peritonitis)

Additional concerns are raised by inflammatory lesions suggestive of endometriosis in adolescents and children. (Marsh and Laufer 2005, Cabana et al. 2010) Endometrial or endometrioid stroma can be challenging to recognize in inflammation (Clement 2007), and the conclusions that these are endometriosis is reasonable. However, Marsh and Laufer (2005) and Cabana et al. (2010) did not exclude infection, endotoxins, or other causes of inflammation (Khan 2014, Khan 2016, Canis 2018) as the source of the inflammation. If these are infectious, then antibiotics can treat active infection and potentially decrease long-term morbidity. Conversely, if these are sterile inflammatory lesions or if bacteria are present but part of a healthy microbiome, then antibiotics may interfere with a healthy microbiome (Power 2017). Cabana MD, Foster-Barber AE, Hong T, Martin DC, Shenkin B. Teen troubled by a trembling leg. Contemporary Pediatrics. 27(6):22-27, 201

Canis et al. (J Gynecol Obstet Hung Reprod. 2017, 46(3):219-227) considered “occult pelvic inflammatory disease” as a potential initiating event for endometriosis.”
Cicinelli et al. (Fertil Steril 2017, 108:289-292) concluded that chronic endometritis might represent a facilitating factor in the development of endometriosis.

Gazvani et al. (J Endometriosis Pelvic Pain Disorders, 2013, 5:2-9) suggested that C. albicans may contribute to the pathogenesis of endometriosis by modulating cytokine production.

Hopton et al. (J Endometriosis Pelvic Pain Disorders 2016, 8:2-7) found higher intrauterine microbial colonization with endometriosis.

Kobayashi et al. (Mol Med Rep, 2014, 9, 9-15. DOI:10.3892/mmr.2013.1755) concluded that infection and sterile inflammation are involved in endometriosis development.

The Tomato Effect (Theory-Based Medicine)

The tomato effect in medicine occurs when an effective treatment for a specific disease is ignored or rejected because it does not make sense in the light of accepted theories of disease mechanisms and treatment of these diseases. The tomato effect can interfere with the acceptance of useful remedies. According to Goodwin & Goodwin (1984), the only three issues that matter in picking a therapy are:

- Does it help?
- How toxic is it?
- How much does it cost?

Goodwin & Goodwin’s three issues can be updated to

- Risks
- Benefits
- Costs
- alternative treatment
- acceptability
- availability
- insurance coverage
- preauthorization
- in-network providers
- out-of-network providers
- other associated concerns of using a therapy.
Patient’s questions include:
- What do I have?
- How did I get it?
- What can we do about it?
- Will insurance cover it?
- Can I avoid surgery?
- Can I avoid hormones?
- How do I manage my allergies?
- How do I avoid narcotics?
- Can I have access to narcotics?

Discussions of theory are not discussions about the effectiveness of treatment. The results of surgical or medical therapy stand on their therapeutic outcomes, not on an opinion or a theory. Since early endometriosis can be transient or stable in many, if not most cases, observation or symptomatic care, such as hormonal suppression can be reasonable. Superficial endometriosis can respond to observation (Evers 1994, Koninckx 1994, Harrison 2000), medication or coagulation. Deep endometriosis will more likely require excision (Malinak 1979, Semm 1980, Martin 1989). Excision was successful in my practice (DCM), just as it was for Dr. David Redwine. His reoperation rate of 55%, with only 19% having histologic endometriosis, was like mine in the 1980s. (Redwine 1991)

In the later years of my practice, although the persistent pain rate after surgery remained relatively constant, I stopped doing as many repeat laparoscopies. Sutton (1994) noted that three to six months of pain relief after surgery is non-specific and can be a placebo response. Performing a repeat laparoscopy for pain that occurred in the first six months after excision was not commonly useful. I focused more on their questions and concerns, helping them with expectations, considering hormonal suppression, encouraging physical therapy, considering stress therapy, deciding about judicious use of narcotics, and more.

Reversal in Evidence-Based Medicine

Evidence-based medicine, like theory, is dependent on the knowledge available at the time it is applied. When knowledge changes, the approach to a disease and its treatment can also change. “Medical reversal” is a term used to describe the phenomenon when the long-established medical practice changes due to new, emerging evidence. Vinay Prasad’s *Ending Medical Reversal: Improving Outcomes, Saving Lives* (2015) discusses the problems that can occur with those changes. Although evidence-based medicine is more grounded than theory-based medicine, both are subject to change over time. Both are subject to the seven stages of a medical reversal: 1) promising report, 2) adoption by providers, 3) patients and payors accept the innovation, 4) insubstantial studies that superficially support the innovation, 5) randomized controlled trials, 6) denial if the trials do not support earlier observations and finally 7) acceptance.

These problems can be compounded by delay. Balas (2000) studied the components of delay such as the time needed to do the research, have the research accepted for publication, and have the change accepted by the general medical community. He calculated that it takes an average of 17 years for research evidence to reach clinical practice.
References
PMID: 16123052
DOI: 10.1093/humupd/dmi034
Open Access: https://academic.oup.com/humupd/article/12/1/49/607182
Batt RE, Martin DC, Odunsi K. Endometriosis of the retrocervical septum is proposed to replace the anatomically incorrect term endometriosis of the rectovaginal septum. Hum Reprod 2014, 29:2603-5.

Bouquet de Joliniere J, Major A, Ayoubi JM, Cabry R, Khomsi F, Lesec G, Frydman R, Feki A. Is it necessary to purpose an add-on to the American classification of endometriosis? This disease can be compared to a malignant proliferation while remaining benign in most cases. EndoGram® is a new profile witness of its evolutionary potential. Front Surg. 2019 6:27. PMC Open Access: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6566301/

Brosens I, Gordts S, Benagiano G. Endometriosis in adolescents is a hidden, progressive and severe disease that deserves attention, not just compassion. Hum Reprod 2013, 28:2026-31. DOI: 10.1093/humrep/det243
Open Access: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3712662/

Open Access: https://erc.bioscientifica.com/view/journals/erc/6/2/10731122.xml

PMID: 19692421
PMC Open Access: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2744474/

Casler DB, A unique diffuse uterine tumor, really an adenoma, with stroma, but no glands. Menstruation after complete hysterectomy due to uterine mucosa in remaining ovary. Transactions of the American Gynecological Society for the year 1919. 44:69-84

Clark AH. endometriosis in a young girl. JAMA. 1948;136(10):690. doi:10.1001/jama.1948.72890270008008a

Cullen TS. Adenomyoma of the rectovaginal septum. JAMA 1914; 62:835-839.

PMID: 9307527, DOI: 10.1111/j.1471-0528.1997.tb12059.x

Donnez J, Dolmans M-M, Fellah L. What if deep endometriotic nodules and uterine adenomyosis were actually two forms of the same disease? Fertility and Sterility, 2019, 111(3):454 – 456

Evers JLH. Endometriosis does not exist; all women have endometriosis. Hum Reprod 1994 9:2206-9.

doi:10.1001/jama.1946.02870340011003

Foster WG. Hypoxia-induced autophagy, epithelial to mesenchymal transition, and invasion in the pathophysiology of endometriosis: a perspective. Biology of Reproduction, 2018, 0(0), 1-2 DOI:10.1093/biolre/ioy137

Goodwin JS, Goodwin, JM. The tomato effect. Rejection of highly efficacious therapies. JAMA 1984, 251: 2387-2390

Hopton EN, Redwine DR. Eyes wide shut: the illusory tale of ‘occult’ microscopic

Invas Gynecol. 2008, 15:82–86

Hueter, 1918, quoted in van der Linden, PJQ. Theories on the pathogenesis of endometriosis. Hum Reprod 1996, 11(suppl 3):53-65

Jerman LF, Hey-Cunningham AJ. The role of the lymphatic system in endometriosis: a comprehensive review of the literature. Biol Reprod 2015, 92:64.

Kantor HI. The enigma of endometriosis. Obstet Gynecol 1964, 23:645-646

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1626574/

Klemmt PA, Carver JG, Koninckx PR, McVeigh E, Mardon HJ. Endometrial cells from women with endometriosis have increased adhesion and proliferative capacity in response to extracellular matrix components: stick toward a mechanistic model for endometriosis progression. 2007, 22:3139-3147

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5925869/

PMID: 31292729

https://doi.org/10.1007/s00431-019-03419-3

Open Access: https://www.fertstert.org/article/S00150282(18)321356

Konincx PR, Martin DC. Deep endometriosis: a consequence of infiltration or retraction or possibly adenomyosis externa? Fertil Steril 1992, 58(5):924-8

https://doi.org/10.1016/j.fertnstert.2018.10.013

Publisher https://linkinghub.elsevier.com/retrieve/pii/S0015028218321356

https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/30166975/

Linden, PJQ. Theories on the pathogenesis of endometriosis. Hum Reprod 1996, 11(suppl 3):53-65

PMID: 18335325

DOI: 10.1080/09513590801890816

https://www.tandfonline.com/doi/full/10.1080/09513590801890816

http://dx.doi.org/10.1016/j.mehy.2016.02.015.

Martin DC. Laparoscopic and vaginal colpotomy for the excision of infiltrating cul-de-sac endometriosis. J Reprod Med 1988, 33:806-808

Open Access http://www.translational-medicine.com/content/5/1/57
Meyer 1903, quoted in van der Linden, PJQ. Theories on the pathogenesis of endometriosis. Hum Reprod 1996, 11(suppl 3):53-65
https://doi.org/10.1007/BF01891397
https://link.springer.com/article/10.1007/BF01891397
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4259553/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6780031/
https://doi.org/10.1002/9781444398519.ch5

PMID: 8550748
DOI: 10.1210/jcem.81.1.8550748
Open Access: https://academic.oup.com/jcem/article/81/1/174/2649406

PMID: 9024261
DOI: 10.1210/jcem.82.2.23783
Open Access: https://academic.oup.com/jcem/article/82/2/600/2823486

Novak E, Pelvic endometriosis AJOG 1931, 22(6):826-837

http://dx.doi.org/10.1210/me.2008-0387
PMID: 19074548
PMC Open Access: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5419313/

Rier SE, Martin DC, Bowman RE, Becker JL. Immunoresponsiveness in endometriosis: implications of estrogenic toxicants. Environ Health Perspect. 103,Suppl 7(Oct):151-6, 1995

Open Access https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1518890/

http://www.springer.com/cda/content/document/cda_downloaddocument/9780857295842-c1.pdf?SGWID=0-0-45-1153739-p174109272

doi: 10.1016/j.bbbadis.2017.06.018. PMID: 28651916

Open Access:

Sampson JA. The escape of foreign material from the uterine cavity into the uterine veins. Am J Obstet (and diseases of Women and Children) 1918, 78:161-75.

Sampson JA. Perforating hemorrhagic (chocolate) cysts of the ovary. Their importance and especially their relation to pelvic adenomas of the endometrial type (“adenomyoma” of the uterus, rectovaginal septum, sigmoid, etc.). Arch Surg 1921, 3:245-323.

https://jamanetwork.com/journals/jamasurgery/fullarticle/536143

Sampson JA. Heterotopic or misplaced endometrial tissue. Am J Obstet Gynecol 1925, 10:649-664
Sampson JA. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Path. 1927b;3(2):93-110.43. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1931779/
Squifflet J;Feger C;Donnez J. Diagnosis and imaging of adenomyotic disease of the retroperitoneal space. 2002, Gynecol Obstet Invest 54(suppl):43-51

Vogel D. Introduction. NIH, Endometriosis 2000, Endometriosis Research and Strategies, April 9 and 10, 2000, Bethesda. Maryland

Von Recklinghausen F. Die adenomye um und cystadenomyome der uterus und tubenwandung, Berlin, 1896 (reported by Casler 1919)

Waldeyer W. Eierstock und Ei. Lepzig1870. Quoted in Russell 1899 and van der Linden 1996.

https://doi.org/10.1016/j.rbmo.2019.10.007
https://linkinghub.elsevier.com/retrieve/pii/S1472648319307837

Open Access: https://journals.sagepub.com/doi/10.1177/030060519861171